
Multi-GPU GEMM Algorithm
Performance Analysis for Nvidia

and AMD GPUs Connected by NVLink
and PCIe

Yea Rem Choi1(B) and Vladimir Stegailov1,2,3

1 HSE University, Moscow, Russia
echoj@hse.ru

2 Joint Institute for High Temperatures of RAS, Moscow, Russia
3 Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Abstract. Modern types of multi-GPU servers combine up to 8 A100
GPUs connected by NVLink 3.0 links through NVSwitch. This connec-
tivity provides unprecedented capabilities for multi-GPU algorithms. In
this work, we analyze the performance of matrix-matrix multiplication
algorithm developed by us previously. Tuning principles and limits for
maximum performance are discussed. Algorithm performance for much
more affordable 4 AMD Radeon RX 6900 XT based server with PCI 4.0
working under ROCm HIP is described for comparison.
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1 Introduction

Modern high performance computing shows an evident trend of the growing use
of specialized computational elements. Among the top 10 systems in the current
Top500 list (June 2022) there is only one CPU-only supercomputer Fugaku with
the number 2. The number 6 is the Sunway TaihuLight supercomputer based on
the special Sunway SW26010 processors (each with 260 computing cores) requir-
ing special programming techniques. The number 9 is the Tianhe-2A supercom-
puter combining Intel Xeon CPUs with the Matrix-2000 accelerators. All other
systems (the numbers 1, 3–5, 7, 8 and 10) provide the major share of computing
power via GPU accelerators: the numbers 1 (Frontier), 3 (Lumi), 4 (Summit), 5
(Sierra), 7 (Perlmutter), 8 (Selene) and 10 (Adastra).

After the long period of Nvidia dominance in GPU computing technologies,
now the real competition of vendors is developing. New GPUs made by AMD
can be found in several largest supercomputers of the current top 10 systems
(Frontier, Lumi and Adastra). The Aurora supercomputer that is to be commis-
sioned soon in Argonne National Laboratory will be based on the new GPUs
made by Intel. Each of these major GPU vendors proposes its own program-
ming framework. In 2007 Nvidia pioneered the CUDA technology. In 2015 AMD
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proposed the ROCm infrastructure and HIP for its GPUs as a nearly complete
substitute for CUDA. In 2019 Intel announced the oneAPI infrastructure that
uses the DPC++ cross-architecture language based on the SYCL standard for
GPU programming. Interoperability of CUDA and the new technologies of AMD
and Intel is crucial developing portable HPC software [1–3]. Many specific mid-
dle layers focused on performance portability are under active development (e.g.
OpenMP, OpenACC, KOKKOS, Alpaka). Porting of linear algebra libraries is
among the first priorities for the proper introduction of new technology. For
example, the ROCm framework provides the hipBlas library that is a very close
analogue of cuBlas and has similarly high efficiency [4].

Computing nodes of GPU-based supercomputers have multiple GPUs per
node. The systems with AMD GPUs Frontier, Lumi and Adastra have very
similar design with 4 GPUs/node. The systems with Nvidia GPUs differ: Sum-
mit has 6 GPU/node, Sierra and Perlmutter have 4 GPU/node and Selene
has 8 GPU/node. In all these systems GPUs are interconnected by ultrafast
communication links (Nvidia NVLink or AMD Infinity Fabric). For example,
one A100 accelerator has 12 NVLink 3.0 links with 50 GB/s peak bandwidth
each. One MI250X accelerator has 8 Infinity Fabric links with 100 GB/s peak
bandwidth each. Such connectivity between GPUs within a supercomputer node
opens unprecedented opportunities for parallel computations.

In this paper, we analyse the performance of the multi-GPU matrix-matrix
multiplication algorithm developed and implemented by us previously [5] for
two systems: a node with 8 A100 GPUs connected by NVLink 3.0 links through
NVSwitch and a node with much more affordable AMD Radeon RX 6900 XT
GPUs connected by PCIe 4.0. The SGEMM variant of the algorithm is consid-
ered. The accuracy of the previously proposed theoretical model [6] for perfor-
mance tuning is validated. The performance influence of the tensor cores avail-
able in A100 [7,8] is described. The peculiarities of porting the algorithm from
CUDA to HIP and running it on the AMD GPUs are described.

Fig. 1. The topology of the A100-equipped node of the cHARISMa supercomputer
with two CPUs and eight Nvidia A100 GPUs by NVLink 3.0 (a) and the server with
one CPU and four AMD RTX 6900 XT connected by PCIe 4.0 (b).
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2 Related Work

Parallel algorithms for matrix multiplication evolve together with the devel-
opment of the parallel computing technologies. The MPI algorithm for parallel
matrix multiplication has been published soon after the MPI standard was intro-
duced [9]. A runtime system called SuperMatrix that parallelize matrix opera-
tions for SMP and/or multi-core architectures was described in [10]. SuperMa-
trix introduced the concept of a set of tiles for work distribution among mul-
tiple threads. The PaRSEC framework [11] introduced the direct acyclic graph
scheduling for dense algebraic operations. The subsequent PaRSEC implementa-
tion of the GEMM algorithm showed very high efficiency [12]. The near optimal
parallel matrix-matrix multiplication algorithm COSMA was introduced based
on the red-blue pebble game ideas [13]. Matrix multiplication is a generic test
case for evaluation new programming models in HPC, e.g. the use for the Rust
programming language [14].

Along with the academic projects SuperMatrix, PaRSEC and COSMA, there
is a commercial multi-GPU Level-3 BLAS library cuBlas-XT developed by
Nvidia. It was shown, however, that cuBlas-XT provides sub-optimal perfor-
mance [15]. The multi-GPU level-3 BLAS library BLASX with improved schedul-
ing was developed by Wang et al. [15]. The problem of communication optimal
partitioning of a square computation domain over three heterogeneous processors
has been considered recently [16].

PaRSEC, BLASX and COSMA are complex and multipurpose software
projects. These projects (as well as cuBlas-XT) allow making calculations for
matrices that are stored in the CPU memory (via special scheduling of CPU-
GPU data transfers). The aim of this work is to analyze a much simpler matrix-
matrix multiplication algorithm for matrices stored in GPU memory only [5,6].
Such an algorithm suits better for the purpose of benchmarking different types
of GPUs and GPU-GPU interconnects.

3 Performance Model Overview

Here, we give a brief overview of the performance model developed in our pre-
vious work [5,6].

The GEMM algorithm is solving the equation

C = αA ∗ B + βC.

The uniqueness of the developed algorithm is that it uses only the resources of
GPUs for its work, avoiding the necessity to wait for the data from the host CPU
during the algorithm execution. This makes it possible to deploy such high band-
width links as Nvlink between GPUs available in GPU servers nowadays (e.g.,
in DGX-like systems). Also, the asynchronous data transfers and computation
overlap have been organized in the algorithm, providing the high performance
rate.
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For the case when we work with big matrix sizes the algorithm performance
is limited by the computational abilities of GPUs. In the observed experiments
the sizes of the tiles could be expected to be optimal for algorithm performance
if they match the following conditions [6]

⎧
⎨

⎩

Ni > 4kBWN/(N − 2kBW ), N > 2kBW

Ni > 2(NumGPUs − 1)BWmath/BWtransfer,
Ni > 2(NumGPUs − 1)BWmath/BWtransfer,

where N and Ni are the sizes of original matrices and tile matrices, kBW =
BWmath/BWmem is the bandwidth coefficient, BWmath and BWmem are the
mathematical and memory bandwidths of a GPU device, and NumGPUs is the
number of implemented in computation GPUs.

4 Testing Platforms

The results reported in this study are obtained on the nodes of the cHARISMa
supercomputer at HSE University [17,18]. The nodes are based on the 8x Nvidia
A100 GPU “Delta” platform with NVSwitch (Fig. 1a). Each GPU has 80 Gb of
HBM2 memory, and eight GPUs are connected by NVLINK 3.0 via NVSwitch.

The benchmarking studies on the A100 equipped node are carried out using
the standard HPC software stack based on CentOS Linux release 7.9.2009, GNU
compilers 8.3.0, and CUDA Version 11.7.64 with the driver ver. 515.43.04.

The second platform is the server with 4 AMD RX 6900 XT GPUs connected
by PCIe 4.0 (Fig. 1b). Each GPU has 16 Gb of GDDR6 memory. The server is
based on the ASRock ROMED8-2T single socket motherboard with one AMD
EPYC 7742 CPU. The benchmarking studies on this server are carried out using
Ubuntu 20.04 Linux with AMD ROCm 5.2.1. RX 6900 XT GPUs have RDNA2
architecture that is a close relative of CDNA2 architecture of MI250X GPUs
used in Frontier, Lumi and Adastra supercomputers.

Table 1 summarizes the key features of two type of GPUs considered in terms
of the parameters used in the performance model proposed in [6].

Table 1. Test platforms parameters

Hardware parameters Nvidia A100 AMD RX 6900 XT

Peak FP32 performance (TFLOPS) 19.5 22.5

Real FP32 performance (TFLOPS) 18.4 21.4

Peak FP32 tensor core performance (TFLOPS) 156 –

Real FP32 tensor core performance (TFLOPS) 124 –

Peak GPU memory bandwidth (GB/s) 2039 512

Peak GPU-GPU bandwidth (GB/s) 300 32

Real GPU-GPU bandwidth (GB/s) 281 25.5
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Fig. 2. Graph of the multi-GPU SGEMM operation on 3, 4, 5, 6, 7, and 8 A100 GPUs
by tile size (Ni) for (N = 90000) elements in a row (column) of matrices without
tensor core in absolute TFLOPS (a) and in relative data (b). The graph (c) is the time
dependency by number of GPUs for tile size (Ni = 1024). The matrices A, B, and C
are stored in devices 2, 1, 0 respectively.
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5 Results

The possibility of reaching high levels of performance of the matrix multiplication
algorithm considered (C = αA∗B+βC) is based on overlapping of computation
and communication [5]. It is the size of the tiles Ni subdividing the matrices
A, B and C that regulates the efficiency of this overlap, and hence the overall
performance of the algorithm. Figure 2 shows the benchmark results for the A100
equipped node without using tensor cores. The results are presented for one of
the largest possible matrix sizes N = 90000 where NxN is the size of the square
matrices considered in this work.

We see that the higher is the number of GPUs NGPUs the stronger is the
dependence of the algorithm performance on the tile size Ni. This behavior is
quite reasonable since the role of GPU-GPU communications increases for higher
NGPUs. For all NGPUs = 3–8 we see the optimum Ni = 1024. At this tile size the
efficiency of the algorithm (attained FLOPS over theoretical peak performance)
reaches more than 80% for all NGPUs.

The strong scaling for this case of N = 90000 is shown on Fig. 2 too and it
is pretty close to the ideal scaling. Figure 2c shows the performance of cuBlas-
XT for the exactly same problem (N = 90000, the points correspond to the
minimum execution times at the variation of the tile size). One can see that
the performance of cuBlas-XT is significantly worse that the performance of our
algorithm.

A100 accelerators have the tensor cores that speed up multiplications of
small matrices. While FP32 peak performance of A100 is 19.5 TFLOPs, tensor
cores boosts it to 156 TFLOPs. Since our parallel matrix-matrix multiplication
algorithm uses cuBlas for multiplications of tiles within each GPU, the algorithm
can benefit from using tensor cores. The use of tensor cores in single precision
can be switched on and switched off using CUDA calls (in double precision tensor
cores can not be switched off and are deployed automatically whenever possible).

Figure 3 shows the benchmark results for our SGEMM algorithm with tensor
cores switched on. One can see that the optimum values of Ni move to larger
values. Despite significant acceleration in absolute values, the level of efficiency
with tensor cores becomes lower (even lower than 40% N = 8).

Figure 4 shows the results for the server with AMD RX 6900 XT GPUs. The
CUDA code of our algorithm has been ported to HIP using the Perl-based hipify
tool available in the ROCm framework. hipBlas GEMM function calls are used
instead of cuBlas. The results show surprisingly modest performance and low
efficiency that is lower than 40% for 3 and for 4 GPUs. It is a strange fact since
even for the quite old Nvidia GTX1070 GPUs the similar benchmark showed
efficiency over 50% (see [6]).

6 Discussion

The algorithm had to be improved to manage with any size of the matrices.
In the ending part of the algorithm the storing A and B devices exchange and



Multi-GPU GEMM Algorithm Performance Analysis 287

Fig. 3. Graph of the multi-GPU SGEMM operation on 3, 4, 5, 6, 7, and 8 A100 GPUs
by tile size (Ni) for (N = 90000) elements in a row (column) of matrices with tensor
core in absolute TFLOPS (a) and in relative data (b). The matrices A, B, and C are
stored in devices 2, 1, 0 respectively.

compute the left matrices part after division them into bands. This way has been
chosen firstly because we had an idea to improve the algorithm which requires
it. Secondly, it is the one of less computationally expensive solution to manage
with left parts at the same time. However, in some cases the effect of this step
is too strong to be able to move the performance maxima. Moreover, for small
block sizes the GPUs have to multiply tall-and-skinny matrices. Improvement of
this issue has not been implemented in the algorithm yet.

Figure 5 shows the profiles of the algorithm execution with and without tensor
cores. While we use tensor core, we achieve reasonably fast computational speed,
but also we moderately, but sensibly lose the accuracy. The observed performance
on each computation kernels are unduly low from peak for example in comparison
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Fig. 4. Graph of the multi-GPU SGEMM operation on 3 and 4 Radeon RX 6900XT
GPUs by tile size (Ni) for (N = 32768) elements in a row (column) of matrices without
tensor core in absolute TFLOPS (a) and in relative data (b). The matrices A, B, and
C are stored in devices 2, 1, 0 respectively.

with case without tensor core. In double precision the accuracy loss is much less
detectable in comparison with the same matrix size in single precision (FP64
tensor cores are IEEE-compliant).

The cuBLAS library allows to use tensor core in single precision on A100
GPUs, but we could not enable FP32 tensor cores in the cuBLAS-XT library
calls. Probably, the cuBLAS-XT supports only the default settings in this issue.

The difficulties in using new GPU technologies can be illustrated by the fol-
lowing fact. From experiments it comes out that version 2021.3.2.4-027534f and
earlier Nvidia Nsight Systems Profiler gives incorrect synchronization profiles
for multiple GPUs. In newer versions this problem has been corrected. Due to
this problem a lot of efforts have been spend looking for the possible reasons of
improper synchronization on A100 GPUs (while no problems were observed on
V100 in our previous work).

We could not achieve the peak performance for RX 6900 XT GPUs during the
algorithm. However, in a single launch of SGEMM in one GPU we do achieve
the value very close to the peak. We marked (in Fig. 6) the time needed to
compute a band multiplication with 232 ≈ 4.3 GFLOPS, thus, the performance is
8 TFLOPS from the peak 22.5 TFLOPS. Figure 6 shows also considerable delays
between data transfers. We suppose that these problems might be explained by
the difficulty for the GPU (that is a consumer GPU, not a server grade GPU)
to perform computations and data transfers simultaneously. This observation
points to the fact that the multi-GPU performance of the algorithm considered
can not be transferred easily to the consumer-grade GPU systems.

The results of the benchmarks of the A100-equipped node give us the possibil-
ity to test the performance model developed previously [6]. Table 2 summarizes
the empirical values and the predictions. We show the threshold values “the-
oretical threshold” and the next larger Ni = 2n “theoretical Ni”. The overall
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accuracy of the predictions is higher than 50%. There are two factors that limit
this accuracy: 1) the model does not take into account the possible last stage
of the algorithm with poor load balancing, 2) the GPU performance for smaller
tile sizes can be much lower than the maximum performance for larger tiles.

Table 2. The optimal tile sizes (Ni): the empirical values from the benchmarks of
A100 system (see Fig. 2 and Fig. 3) and the predictions of the model [6].

A100 with NVLink NGPUs

3 4 5 6 7 8

Without tensor cores Empirical 1024 1024 1024 1024 1024 1024

Theoretical threshold 262 393 524 655 786 917

Theoretical Ni 512 512 1024 1024 1024 1024

With tensor cores Empirical 2048 4096 4096 4096 4096 4096

Theoretical threshold 1766 2648 3531 4413 5296 6178

Theoretical Ni 2048 4096 4096 8192 8192 8192

In the future, it would be interesting to see how the performance of the
our algorithm compares with the performance of the SuperMatrix, ParSEC and
COSMA implementations. Deployment of our algorithm in such a standard test
as, for example, High Performance Linpack (HPL) would be another interesting
problem for further study.

7 Conclusions

The empirical optimum parameters for our multi-GPU SGEMM algorithm
obtained for 8 A100 based server with NVLink are compared with the theo-
retical model predictions. It is shown how using tensor cores changes the bal-
ance between communication and computation. The benchmark results obtained
using the server with 4 AMD RDNA2-type GPUs connected by PCI 4.0 reveals
certain peculiarities of porting our multi-GPU SGEMM algorithm from CUDA
to HIP.
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of supercomputer facilities provided by HSE University. This research was supported
in part through computational resources of HPC facilities at HSE University [18].

References

1. Kondratyuk, N., Nikolskiy, V., Pavlov, D., Stegailov, V.: GPU-accelerated molec-
ular dynamics: state-of-art software performance and porting from Nvidia CUDA
to AMD HIP. Int. J. High Perform. Comput. Appl., p. 10943420211008288 (2021)

2. Williams-Young, D.B., et al.: Achieving performance portability in gaussian basis
set density functional theory on accelerator based architectures in NWChemEx.
Parallel Comput. 108, 102829 (2021)



292 Y. R. Choi and V. Stegailov

3. Cojean, T., Tsai, Y.H.M., Anzt, H.: Ginkgo-A math library designed for platform
portability. Parallel Comput. 111, 102902 (2022)

4. Brown, C., Abdelfattah, A., Tomov, S., Dongarra, J.: Design, optimization, and
benchmarking of dense linear algebra algorithms on AMD GPUs. In: 2020 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2020)

5. Choi, Y.R., Nikolskiy, V., Stegailov, V.: Matrix-Matrix Multiplication using mul-
tiple GPUs connected by NVLink. In: 2020 Global Smart Industry Conference
(GloSIC), pp. 354–361. IEEE (2020)

6. Choi, Y.R., Nikolskiy, V., Stegailov, V.: Tuning of a matrix-matrix multiplication
algorithm for several GPUs connected by fast communication links. In: Sokolinsky,
L., Zymbler, M. (eds.) PCT 2022. CCIS, vol. 1618, pp. 158–171. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-11623-0 12

7. Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.: Nvidia tensor core
programmability, performance and precision. In: 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 522–531. IEEE
(2018)

8. Dakkak, A., Li, C., Xiong, J., Gelado, I., Hwu, W.m.: Accelerating reduction and
scan using tensor core units. In: Proceedings of the ACM International Conference
on Supercomputing, pp. 46–57 (2019)

9. Van De Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication
algorithm. Concurrency Pract. Experience 9(4), 255–274 (1997)

10. Chan, E., et al.: SuperMatrix: a multithreaded runtime scheduling system for
algorithms-by-blocks. In: Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 123–132 (2008)

11. Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical DAG
scheduling for hybrid distributed systems. In: 2015 IEEE International Parallel
and Distributed Processing Symposium, pp. 156–165. IEEE (2015)

12. Herault, T., Robert, Y., Bosilca, G., Dongarra, J.: Generic matrix multiplication
for multi-GPU accelerated distributed-memory platforms over PaRSEC. In: 2019
IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems (ScalA), pp. 33–41. IEEE (2019)
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